jueves, 10 de octubre de 2024

El pez cebra reconoce los niveles de oxígeno en el agua al “probarlos”

El oxígeno es incoloro, transparente, inodoro e insípido. Los humanos no podemos saborearlo. Pero una nueva investigación ha revelado que los peces cebra jóvenes de agua dulce pueden usar su sentido del gusto para medir los niveles de oxígeno en el agua.

"Este es el primer ejemplo de una estrecha relación entre el gusto y la respiración en los peces", explica Steve Perry, profesor emérito de biología de la Universidad de Ottawa, en Canadá.

Perry y su equipo descubrieron que las células que detectan oxígeno cuando el pez cebra respira bajo el agua están presentes en sus papilas gustativas, órganos del gusto que en los vertebrados se encuentran en la lengua, el paladar blando y el epitelio de la faringe.

Estas células desempeñan un papel en la regulación de las respuestas del sistema respiratorio y sirven como un mecanismo importante para responder a la hipoxia. Hasta ahora, no se sabía que las células gustativas tuvieran una doble funcionalidad, y este descubrimiento anula el pensamiento convencional sobre los órganos sensoriales de los organismos acuáticos.

La información sobre el oxígeno se puede transmitir a través del gusto

Todos los animales tienen la capacidad de sentir cambios en el oxígeno proporcionado por su entorno. Como resultado, cuando una persona cae en un estado hipóxico, se produce una reacción biológica llamada respuesta ventilatoria hipóxica (HVR), que promueve la respiración.

Los investigadores utilizaron un método llamado “imágenes de calcio” para observar peces cebra juveniles vivos y así probar la hipótesis de que la vía de transducción de señales que controla el gusto también se utiliza para detectar el oxígeno y activar el HVR.

Las imágenes de calcio son un método para medir la concentración y el flujo de iones de calcio mediante la introducción en las células de una sustancia cuya intensidad de fluorescencia cambia en respuesta a los iones de calcio. Esto permite observar directamente la señalización del calcio en las células nerviosas (la vía de transmisión de información que controla las funciones celulares a través de los iones de calcio).

Un mecanismo de supervivencia

Según el equipo de investigación, las células de Merkel (MLC), que forman las papilas gustativas, funcionan como células quimiorreceptoras de oxígeno en los cuerpos de los peces cebra jóvenes. Específicamente, el MLC estimulado por la hipoxia promueve la actividad de los iones calcio, provocando HVR. En otras palabras, las señales que controlan la detección y reacción del oxígeno se transmiten a través de la vía de transmisión de información gustativa.

Además, el MLC transmite señales de información de oxígeno al nervio craneal IX (nervio glosofaríngeo) y al nervio craneal. También desempeña un papel en la conexión de las sinapsis con las neuronas (células nerviosas).

"Cuando eliminamos estas células, se alteraron los patrones de respiración del pez cebra hipóxico. Por el contrario, también descubrimos que la estimulación de los nervios que se extienden desde las papilas gustativas favorecía la respiración", explica el investigador postdoctoral Yihan Pan, miembro del equipo de investigación.

Los investigadores creen que esta capacidad de "probar" la concentración de oxígeno en el agua puede ser un mecanismo de supervivencia esencial que les permita responder rápidamente a condiciones hipóxicas. Pan señala que el hecho de que las papilas gustativas se utilicen no solo para saborear sino también para controlar la respiración es un ejemplo clásico de una única estructura biológica que cumple múltiples funciones.

Ahora que el entorno que rodea a los ecosistemas está cambiando drásticamente debido al cambio climático, resulta cada vez más importante profundizar nuestra comprensión de los mecanismos mediante los cuales los organismos acuáticos perciben los cambios en su entorno. Perry y sus colegas creen que su investigación no solamente ha profundizado su conocimiento científico, sino que los resultados también podrían tener utilidad práctica en el futuro, como en la conservación y acuicultura de la vida acuática.

(Editado por Daisuke Takimoto)

Artículo originalmente publicado en WIRED JapónAdaptado por Mauricio Serfatty Godoy.


Pez cebra  en acuario.

Estas medusas son capaces de fusionarse en un solo ser para salvar su vida

 Dos animales independientes pueden fusionarse en uno solo para asegurar su subsistencia. Esto es cierto, al menos, para las ‘medusas peine’. Un reciente estudio encontró que una puede combinarse con otra y unir sus tractos digestivos para compartir el alimento del mar. Esta es la primera vez que los biólogos logran inducir esta clase de reacción biológica en un organismo complejo.

Biólogos japoneses y del Reino Unido encontraron que la Mnemiopsis leidyi, una 'medusa peine', carece de alorreconocimiento. Esta particularidad del sistema inmunológico de muchos organismos complejos es responsable de identificar el tejido externo como un invasor y detonar una respuesta de combate para expulsarlo o eliminarlo. Se trata de la capacidad del cuerpo de distinguir entre uno mismo y los demás. Es debido al alorreconocimiento que los trasplantes de órganos en personas tienen una alta tasa de rechazo.

Las Mnemiopsis leidyi son, en realidad, ctenóforos, no medusas. Aunque similares en aspecto, pertenecen a diferentes filos. Los ctenóforos se mueven utilizando estructuras alargadas que parecen peines, mientras que las medusas nadan contrayendo su estructura de campana. Los ctenóforos atrapan a sus presas con una especie de pegamento en su cuerpo.

Yo había puesto dos medusas aquí…

La investigación se originó por casualidad. Los científicos a cargo explican que durante la recolección de 'medusas peine', dos de ellas resultaron heridas. Para que se recuperaran, fueron apartadas del resto en un tanque especial. Al día siguiente, ambas Mnemiopsis leidyi habían desaparecido, formando un nuevo organismo con dos colas y un solo sistema nervioso.

Con ese antecedente, los científicos diseñaron un experimento para reconocer las capacidades de alorreconocimiento de estos organismos. Extrajeron lóbulos de algunos de ellos y los colocaron en parejas. En el 90% de los casos, los ctenóforos se fusionaron en unas cuantas horas. Al principio, los cuerpos tenían movimientos independientes, pero pronto las contracciones musculares se sincronizaron como las de un solo ser. Las ‘medusas peine compuestas’ vivieron por más de tres semanas.

La fusión no es exactamente simétrica anatómicamente hablando. Aunque los tractos digestivos se convirtieron en uno solo, el sistema excretor de las medusas continuó funcionando de manera independiente.

Los ctenóforos se fusionan con facilidad, pero el resultado presenta varios retos para la especie. Por ello, no está claro si el fenómeno que se observó es una estrategia de supervivencia o solo una coincidencia debido al parentesco entre ellas. Algunos biólogos que no estuvieron involucrados en el experimento opinan que podrían ser medusas peine hermanas. Estudios futuros deberán tomar en cuenta Mnemiopsis leidyi no emparentadas.

El hallazgo ha emocionado al equipo de biólogos marinos. "Los mecanismos de alorreconocimiento están relacionados con el sistema inmunológico, y la fusión de los sistemas nerviosos está estrechamente relacionada con la investigación sobre la regeneración. Desentrañar los mecanismos moleculares que subyacen a esta fusión podría hacer avanzar estas áreas de investigación cruciales", opina Kei Jokura, coautor de la investigación publicada en Current Biology.

En 2020 un grupo de investigadores encontraron el que parecía ser el primer animal que vivía sin oxígeno

 Recientemente ha vuelto a la actualidad informativa un pequeño organismo, un parásito del salmón llamado Henneguya salminicola. El motivo es que este ser vivo, que ha sido descrito como el primer animal que puede vivir sin oxígeno y, aunque es un hallazgo importante, la historia cuenta con algunos matices importantes.

Un hallazgo no tan reciente. Hace cuatro años, un equipo de investigadores anunciaba el hallazgo de un organismo que no necesitaba de oxígeno para sobrevivir. H. salminicola era un parásito del salmón perteneciente a la filo de los cnidarios (Cnidaria), el cual engloba a medusas y otros organismos similares.

El hallazgo, publicado en la revista Proceedings of the National Academy of Sciences (PNAS), tenía el potencial de hacernos replantear algunas de nuestras concepciones clave sobre estos y otros animales. Desde entonces hemos ido descubriendo que, quizás, este curioso organismo podría no ser tan extraño como a veces se indica.

Sin mitocondrias. Este La clave del hallazgo estaba en el hecho de que H. salminicola carecía de genoma mitocondrial, lo que implica que no solo no necesita respirar, sino que es capaz de vivir una existencia al margen de este gas. Nuestra dependencia del oxígeno comenzó hace unos 1.450 millones de años, cuando una célula arquea “engulló” y asimiló una bacteria. Estos dos organismos se hicieron uno, la bacteria como orgánulo de la arquea.

Esta unión dio pie a la evolución de las células complejas ya que este nuevo orgánulo, la mitocondria, dotaba a la célula de una nueva fuente de energía. Nacieron así las células eucariotas, que no solo contaban con una mitocondria sino también con un nuevo núcleo en el que alojar su código genético (o al menos la mayor parte de él).

Las mitocondrias son las encargadas de “romper” las moléculas de oxígeno y producir adenosín trifosfato (ATP), una molécula que a su vez permite al resto de la célula obtener la energía necesaria para funcionar adecuadamente.

Una excepción, ¿entre otras? Hace unos meses, el que fuera Catedrático de Biología Animal de la Universidad de Málaga, Ramón Muñoz-Chápuli Oriol, incidía en un artículo para The Conversation en algunos aspectos importantes a la hora de interpretar este hallazgo. Especialmente en uno: quizás este no sea el único organismo conocido que puede vivir sin recurrir al oxígeno.

Existen otros candidatos conocidos, el matiz es que solo en el caso de H. salminicola tenemos pruebas de que se trata, efectivamente, de un organismo complejo pero anaeróbico. Los principales candidatos a esto son los loricíferos de la cuenca de L'Atalante.

L'Atalante, es un lago hipersalino submarino situado en el Mediterráneo. Estos lagos son lugares hostiles a la vida en los que solo pueden campar a sus anchas microorganismos extremófilos como algunas bacterias. Estos lagos carecen de oxígeno porque su agua es tan salina que no se mezcla con el agua de su entorno. El agua del mar requiere de estas mezclas para oxigenarse ya que este oxígeno suele producirse (generalmente) en las capas superiores donde algas y cianobacterias lo expulsan como remanente de la fotosíntesis.

Tres loricíferos. El motivo por el que no sabemos si las tres especies de loricíferos descubiertas en L’Atalante viven exentos de oxígeno es porque existen algunas dudas sobre si fueron hallados en un ambiente realmente anóxico. Sí sabemos, sin embargo, que al igual que H. salminicola las células de estos animales carecen de mitocondria.

En su lugar cuentan con unos orgánulos similares, probablemente evoluciones más simples de la mitocondria. En el caso de H. salminicola, se sospecha que la evolución llevó a este “pariente” de las medusas a simplificar el funcionamiento de su mitocondria al poder extraer la energía que requería de la bioquímica del salmón, el huésped al que parasita.

Los loricíferos de L’Atalante pueden servirnos para comprender los mecanismos empleados por otros posibles animales anóxicos. Según explicaba Muñoz-Chápuli Oriol en su artículo, estos animales “utilizan protones en lugar de oxígeno como aceptores de electrones para generar hidrógeno molecular y ATP”.

Catalogando lo inclasificable. La naturaleza escapa con gran facilidad a nuestros intentos de catalogarla. Los matices que hacen a cada especie única pueden dificultar nuestra tarea de determinar cuál es la primera especie descubierta en un género o qué otra especie excede en otro sentido.

Interés persistente. A menudo los estudios dan de qué hablar años después de su aparición. Entender cómo evolucionan las especies para adaptarse a entornos particulares es un saber importante de cara a descifrar la naturaleza de la vida en nuestro planeta, por lo que es lógico que genere interés.

Por si entender la evolución de la vida en nuestro planeta fuera poco, comprender las formas de vida que aparentan desafiar las nociones más básicas de la vida en nuestro planeta nos permiten también adaptarnos, por ejemplo, para la búsqueda de vida en otros lugares del universo.

jueves, 3 de octubre de 2024

Cómo es posible el universo con materia oscura y sin materia oscura

 

A día de hoy, el modelo más aceptado en cosmología para explicar el universo recibe el nombre de ΛCDM (siglas que corresponden a lambda o “no exactamente constante cosmológica” Cold Dark Matter), en el que la materia y la energía oscura son indispensables. Sin embargo, cada vez cobran más fuerza modelos cosmológicos de un universo posible sin contar con tanta “oscuridad”. 

El universo clásico

ΛCDM es el modelo estándar y el más conocido. Da una solución bastante aproximada de la existencia de todo lo que observamos experimentalmente. Explica el fondo cósmico de microondas, una forma de radiación electromagnética que se ha encontrado experimentalmente y que se considera una de las pruebas principales de que hubo un Big Bang

El modelo también explica la distribución de las galaxias y cúmulos de galaxias, y ofrece una buena aproximación de las abundancias de hidrógeno, helio y litio que se observan en el cosmos. 

El modelo estándar basa parte de su desarrollo en la existencia de materia oscura que es, no obstante, materia. Esto significa que tendría que estar formada por átomos/partículas no normales , que aún no se han encontrado a pesar de que se están realizando muchos experimentos para detectarlas. Hasta ahora, ninguno ha tenido éxito. Este no resultado nos lleva a la duda de su existencia.

Después del Big Bang

Según el modelo ΛCDM, tras el Big Bang, el universo sufrió una expansión: la inflación. La densidad del sistema fluctuó, y esto impulsó la expansión de una mezcla de fotones y partículas conviviendo en forma de plasma. Se inició así la expansión del universo.

Estas fluctuaciones produjeron cambios en la densidad de la materia y la radiación llegando a un punto en el que los electrones y los bariones formaron los átomos. El hidrógeno fue el primero en formarse. 

Pero hay un momento en el que el plasma se volvió neutro y las perturbaciones no se propagaron. Solo permanecieron fluctuaciones (las oscilaciones acústicas bariónicas, BAO) generadas, según el modelo, principalmente por fotones, bariones, energía oscura y materia oscura. 

Estas oscilaciones han sido observadas experimentalmente y se consideran como fósiles de las primeras ondas del universo que quedaron impresas en el fondo cósmico de microondas (CMB, por sus siglas en inglés). 

La edad oscura

En este estadio el universo era inobservable en la mayor parte del espectro electromagnético; estaba en la denominada edad oscura. Durante esta era, en regiones excesivamente densas, comienza el colapso gravitacional, lo que da lugar a la formación de las primeras fuentes de radiación, como las estrellas. Todo continúa creciendo y fusionándose bajo la influencia de la gravedad, formando una vasta red cósmica de densidad de algo que no sabemos qué es, y no es posible observar: se trata de la llamada materia oscura. 

A medida que el universo continúa expandiéndose con el tiempo, la presión negativa asociada a la energía oscura (en el modelo ΛCDM) domina, oponiéndose, cada vez más, a las fuerzas gravitacionales. De este modo, con el impulso de la energía oscura, la expansión del universo se acelera.

Todo parece cuadrar en este modelo que se sustenta en la existencia de la materia y la energía oscura. Sin embargo, y cada vez con más tensión científica, ambas se están poniendo en cuestión. Existen modelos que explican el universo sin contar con ellas. 

El modelo alternativo

Como alternativa se ha propuesto el modelo híbrido bautizado como CCC+TL (CCC: constantes de acoplamiento covariables; TL: luz cansada). Este modelo, liderado por Rajendra Gupta, profesor de física e investigador de la Universidad de Ottawa (Canadá), niega por completo la existencia de materia oscura. Los resultados de las investigaciones se han publicado en Astrophysical Journal

En este modelo la Λ (“no exactamente constante cosmológica”), responsable de que el universo esté acelerando su expansión y asociada con la energía oscura, se reemplaza por un conjunto de constantes de acoplamiento que son “covariables”. Esto significa que pueden variar con el tiempo y entre diferentes regiones del espacio, es decir, dependen de las condiciones del entorno. 

En consecuencia, la aceleración de la expansión del universo no se debe a la denominada “energía oscura” sino al cambio que las constantes de acoplamiento sufren con el tiempo y el espacio. Es una explicación mucho más dinámica y adaptable.

Añadamos la luz cansada

El modelo, además, se combina con luz cansada. Lo postuló Einstein: por razones no especificadas, la luz puede perder energía en proporción a la distancia recorrida (de ahí lo de luz cansada). 

Esta idea se ha propuesto para explicar el corrimiento al rojo de la luz de las galaxias distantes. Los fotones sufren una pérdida gradual de energía a medida que viajan a través del cosmos. Así se puede reproducir la ley de distancia del corrimiento al rojo, la conocida ley de Hubble.

Este modelo, al igual que el estándar, también explica las oscilaciones acústicas bariónicas a gran escala, el tamaño de las galaxias y la distribución angular del horizonte debida al BAO e impreso en las microondas cósmicas. 

Sin energía oscura ni materia oscura

El modelo CCC+TL sugiere que las leyes de la naturaleza, las cuales consideramos constantes, pueden en realidad cambiar con el tiempo y en diferentes lugares del universo. Además, propone que el cambio en el color de la luz de las galaxias distantes podría explicarse porque la luz pierde energía durante su viaje, en lugar de que el espacio se esté expandiendo. No necesitando de una energía oscura.

En el modelo estándar, la materia oscura es necesaria para mantener unidas las masas, permitiendo la formación y distribución de galaxias y cúmulos de galaxias en el universo observable y no deshaciéndolas con la expansión. Sin embargo, el modelo CCC+TL elimina la necesidad de invocar a la materia oscura para explicar las observaciones cosmológicas, ya que introduce correcciones o modificaciones a la gravedad en ciertas escalas, en lugar de la teoría estándar de la gravedad basada en la relatividad general de Einstein

Estas modificaciones explican los fenómenos que normalmente se atribuyen a la materia oscura, como la rotación de las galaxias y la distribución de las estructuras a gran escala del universo.

La edad del universo como prueba

Mientras que el modelo estándar, ΛCDM, estima una edad del universo de 13,8 Ga, el modelo CCC+TL la sitúa en 26,7 Ga. Prácticamente el doble. 

Las recientes observaciones del telescopio espacial James Webb plantean una cuestión fundamental: ¿cómo surgieron las galaxias en el universo primitivo y cómo evolucionaron a un grado comparable al de miles de millones de años? 

El modelo CCC+TL responde a estas preguntas: la edad del universo es mayor, lo que implica más tiempo para la formación y evolución de esas galaxias primitivas, cuyas estructuras observadas son similares a las de galaxias más antiguas (“más mayores”).

Las edades que nosotros hemos calculado para los cúmulos globulares se han dado a conocer en American Journal of Astronomy and Astrophysics y conducen a una edad del universo coincidente con la del modelo CCC+TL. 

¿Inclinará el satélite Euclid la balanza?

Durante los próximos seis años Euclid, un espectacular experimento de la Agencia Espacial Europea, observará las formas, distancias y movimientos de miles de millones de galaxias en un radio de 10 mil millones de años luz, creando un mapa cósmico 3D. Con sus datos podremos comprobar la existencia de la materia oscura, si la hay. Entre tanto, ¿cuál es el modelo más próximo a la realidad? 

El principio democrático de todo modelo teórico es que cualquiera es acertado hasta que los experimentos o las observaciones demuestren lo contrario.


























Euclid perfora el denso polvo y gas de la nebulosa Messier 78, a 1 300 años luz de distancia en Orión, para revelar estrellas jóvenes y calientes envueltas por gas y entrelazadas por filamentos más oscuros de polvo interestelar. Euclid Messier