El conocido como efecto Meselson-Stahl es un concepto previsto por la evolución más de 20 años atrás. Pero no ha sido hasta ahora que los científicos han demostrado esta pieza de la "teoría de la vida".
Todos, tú, yo, tus amigos, tu mascota, cualquier ser vivo... poseemos ADN. Genes. Un genoma. Todas estas palabras son diferentes maneras de nombrar al libro de instrucciones que le explica a cada célula y cada molécula de nuestro cuerpo qué y cómo lo tiene que hacer. El resultado es el organismo que se completa al final del proceso. Hace unos sesenta años, sin embargo, la existencia y función de este sistema no estaba tan clara. Por entonces, muchos dolores de cabeza, muchas discusiones y muchos experimentos fueron necesarios para desvelar el secreto de la vida.
El efecto Meselson-Stahl
Entre otras cosas, uno de los temas que más debate creo fue la transmisión de los caracteres. Es decir, ¿cómo pasan las características de padres a hijos? Por supuesto, la molécula de ADN, una vez entendida su estructura gracias a Watson, Crick y Franklin, tenía que tener un papel fundamental. Pero si esto era así, ¿cómo funcionaría a lo largo del tiempo? No somos iguales que nuestros tatarabuelos. De hecho, nos parecemos más a nuestros padres que a nuestros parientes lejanos, ¿verdad? Y ¿cómo funcionaría a lo largo de mucho, mucho tiempo? Hubo quien se planteó que el ADN tenía que tener, también, un papel protagonista en la evolución. ¿Pero cómo lo interpretaría? El corpus que forma lo que se suele llamar la teoría de la evolución es muy, muy complejo. Por eso, cada parte suele probarse por separado.
El experimento que realizaron los doctores Meselson y Stahl en 1957 tenía como finalidad comprobar una idea que por entonces resultaba loca: ¿y si en la reproducción se conserva una cadena y se construye una nueva? Para que lo entendamos: las cadenas de ADN están formadas por dos cadenas que se unen como si fuera una cremallera. Los dientes de dicha cremallera son exclusivos, por lo que cada cadena es una copia, con la misma información, pero de forma inversa con respecto a la otra (es decir, una cadena complementaria). Según la hipótesis de Meselson y Stahl, cuando una célula crea otra célula nueva, deja una copia de la cadena original en cada una de las células y copia a partir de esta su complementaria. Efectivamente, esto fue demostrado en el laboratorio usando átomos radiactivos (isótopos) de nitrógeno. Existe una gran diferencia entre la replicación, que hemos visto, y la reproducción sexual, la cual usa un proceso en el que se mezcla y se transmiten otros caracteres.
Pero para ello hacen falta dos individuos y dos gametos (como los espermatozoides y los óvulos). Este mecanismo es especialmente útil en la evolución ya que permite adquirir nuevas características. Aquí es donde llegamos al efecto Meselson-Stahl. Las predicciones en la teoría evolutiva, en base al experimento realizado por estos dos investigadores, dice que los organismos con reproducción asexual también pueden adquirir nuevas características sin tener que mezclar otra cadena de ADN obtenida de otro individuo. Pero, ¿cómo puede ser? Si no hay otro material genético, ¿cómo va a adquirir nuevas características? Por ello, el conocido como efecto Meselson-Stahl, es decir, que un ser asexual aislado genéticamente de otros parecidos a sí mismo, terminará por evolucionar y ser muy distinto de sus "hermanos". se había mostrado bastante elusivo. Hasta ahora.
Demostrando otra pieza de la evolución
Lo que han conseguido los investigadores de Glasgow ha sido, precisamente, demostrar que el efecto Meselson-Stahl ocurre no solo en la teoría, sino en la realidad. Para ello han usado las muestras genéticas obtenidas a partir de Trypanosoma brucei. Este pequeño parásito es el causante de la enfermedad del sueño, portada por la mosca tsé-tsé. Lo que han hecho, básicamente, es coger el genoma, es decir, el material genético, y secuenciarlo. Lo que se consigue así es un "mapa" genético. Para poder demostrar la existencia del efecto Meselson-Stahl, han secuenciado el genoma de 85 parásitos obtenidos desde 1952 hasta 2004 entre Guinea, Camerún y Costa de Marfil. Este tremendo trabajo ha dado como resultado un enorme "mapa" tanto "geográfico" como temporal de la distribución del parásito.
Los investigadores han trazado el "mapa genético" de 85 individuos a lo largo de 60 años
De ahí, los parásitos fueron dividiéndose y desplazándose, evolucionando de manera distinta
Trypanosoma
Como explicábamos antes, esta es solo una pieza más. En concreto, esta habla de cómo los animales y seres vivos que no pueden usar el sexo para evolucionar emplean otros sistemas ya predichos tiempo atrás. Lo único que ha conseguido el equipo de científicos es demostrar algo que se sospechaba de manera empírica, con un experimento que ha requerido la información de más de sesenta años. Pero es que la evolución no es una cosa sencilla de comprender. Ni tan siquiera de observar. Eso a pesar de que la vemos todos los días en acción.
Santiago Campillo para Hypertextual.com
No hay comentarios:
Publicar un comentario
Quin és el teu Super-Comentari?